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In connection with the extensive  use of va r ious  kinds of inhomogeneous m a t e r i a l s  (glass,  c a r -  
bon and boron re in forced  p las t i cs ,  c e r m e t s ,  concre te ,  re in forced  m a t e r i a l s ,  etc.) in techno-  
logy, the re  a r i s e s  a need to ca lcula te  the e las t ic  p r o p e r t i e s  of such sys t ems .  Here  in each 
ca se  it is n e c e s s a r y  to work  out specific methods for  finding both elast ic  f ie lds  and effect ive 
moduli.  Since, as  a rule,  such methods do not take into account the c h a r a c t e r  of d is t r ibut ion 
of inhomogenei t ies  in space,  which is re f lec ted  on the f o r m  of the cen t ra l  moment  functions 
[1], they can  be r e f e r r e d  to a single c l a s s  and, consequently,  can  be obtained by a common  
method [2]. In the given paper ,  by means  of the method of solution of s tochast ic  p r o b l e m s  
for  micro inhomogeneous  solid bodies p roposed  inthe  work  of the author [2], we find e las t ic  
f ie lds  and effect ive moduli  in an a r b i t r a r y  approximat ion.  Depending on the choice  of p a r a -  
m e t e r s ,  the l a t t e r  f o r m  bounds within which the re  l ie the exact  va lues  of the effect ive moduli. 
It is shown that  the conditions used e a r l i e r  for  finding these  p a r a m e t e r s  [3] a re  not the bes t  
ones. The effect ive e las t ic  moduli of an lnhomogeneous medium are  calculated,  and bounds, 
n a r r o w e r  than the bounds fo rm ed  in [3], a re  found fo r  them.  

1. Let  the e las t ic  p r o p e r t i e s  of the s ta t i s t ica l ly  homogeneous infinite medium under  cons idera t ion  be 
desc r ibed  by a random t enso r  field X i jk/  (r). Side by side with this we introduce for  c o m p a r i s o n  a homo-  

C geneous t enso r  f ield X i jk/  which c h a r a c t e r i z e s  the elast ic  p r o p e r t i e s  of a ce r t a in  homogeneous body. 

The f ie lds  of d i sp lacements  u i and u c, co r respond ing  to the two t e n s o r s  of the e las t ic  moduli, sa t is fy  
the equations 

Lthuk = -- [,, L,k = Viklj~,V, 

L~ c u~ h, L~% Vj = -- = ~iik:V: 

where  f i  is the densi ty vec t o r  of body fo rces .  

The p rob lem cons i s t s  of finding the t e n s o r s  of s t r a ins  s li = 1/2 (Viu j +Vjui) = u(i ' j) and effect ive 
$ 

moduli  ), l jkl  which de te rmine  the mean s t r a ins  (s  > by means  of the equation 

L ~  <u~> = -- ]i, L[~ = Y~kzVz (I. I) 

Here  the angle pa r en these s  denote averag ing  over  the region v whose d imens ions  a r e  l e s s  than the 
sca le  of lnhomogeneity of the r egu l a r  component  of the f ield <s ij >,  but which is much g r e a t e r  than the 
d imensions  of a gra in  of inhomngeneity,  under  which we a re  to unders tand a region of constant  value of 
A ljk[ �9 For  ergodic f ields,  averag ing  ove r  the volume coincides  with averag ing  over  an ensemble  of r e a l i -  
zat ions.  

, 
In the genera l  case  the t enso r  ), i jkl  p o s s e s s e s  noulocality; this  leads  to an in tegra l  connection be -  

tween s t r e s s e s  and s t ra ins ,  o r  to necess i ty  of taking into account the inhomogeneity of macroscop ic  f ie lds  
of s t r a in  ( s [4]. However ,  when cons ider ing  quas i -homogeneous  f ie lds  <s ) , for  which the d imen-  
sions of the region of inhomogeneity substant ia l ly  exceed the scale  of noulocali ty ~, i~kl,  th is  nonlocali ty 

$ 
does not manifes t  i t se l f  [5-7] and the quantity ~ i~kI in Eq. (1.1) can be cons idered  as  a usual  t ensor .  
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I t  can be shown [3] that for these fields e i j -  (eij  } �9 Here  the function f i  obviously has a region of 

inhomogeneity of the same o rde r  as the field ( e i j ) .  

Omitting in the following the tensor  indices and using the resu l t s  of Sections 1 and 2 of [2], we write 
the express ion for the s t ra in  field, 

e = lira e,, e, = An (e), k' -= X -- ~ 

1,t 

An -= (1 -- gN')-~ B n ((l - -  gX') -~ R . )  -~, lCn = ~ ( t I l )  ~ 
(1.2) 

where the opera tor  H opera tes  according to the rule 

(Hl)  ~ = H l  (Hl)  ~-1 = h l  (HI) ~-1 - -  ( h l  (HI) k-1 ) ~_ ~ [hl (Hl)  ~-1] 

while 6 is the opera to r  of taking the random component. Here g and h a re  the opera to r s  determined,  r e s -  
pectively,  by the singular and formal  components  of the second derivat ive of the Green tensor  of the ope ra -  
to r  L e. 

With (1.2) taken into account, the cor responding  approximation for  the s t r e s s  field and the t ensor  of 
effective moduli has the form 

=lirns~, d , = k A  n(e), ( sn)=X~(e)  
"-~ (1.3) 

L. = lim ~,, X~ ---- (~An) 

The express ions  (1.2) and (1.3) completely  solve the problem of descr ib ing an Inhomogeneous elast ic 
medium in the n-th approximation.  In the case  n - -  .o we obtain the exact solution. However, because of 
mathemat ica l  difficulties [2, 7, 101 in a major i ty  of cases  we have to confine ourse lves  to the zeroth (singu- 
lar) approximation in the express ion  (1.2) and (1.3), which takes into account only the local interact ions 
between grains  of inhomogeneity 

R, ~ Ro = l, 3., ~ X o = (~.Ao) (1.4) 

A o = X - I X c  ( X - t X c )  -1, X = )~ + be, Xr  = Xr + bc (1.5) 

while the t ensor  b e is defined by the equation gX c = - 1 .  

It should be noted that the s tat is t ical  averaging used here presupposes  averaging both with respec t  
to the real izat ions  of the elast ic modull and with respec t  to the real izat ions  of the fo rm of gra ins  of Inhomo- 
geneity [11]. The la t ter  is conveniently descr ibed  by a vec tor  a drawn from the origin of the coordinates ,  
located at the cen te r  of mass  of a homogeneous grain, to a point lying on the surface bounding it. The ten-  
sor  g is a function of the shape of the grain surface and, consequently,  of the vec to r  a. 

The express ions  (1.4)and (1.5) thus allow us to calculate  the effective moduli in the case  of an a rb i -  
t r a r y  microinhomogeneous medium in a singular approximation. If the gra ins  have a spherical  shape or  
the i r  or ientat ions are  s t r ic t ly  ordered  (a full mechanical  texture),  then averaging with respec t  to the fo rm 
of grains  (or with respec t  to the real izat ions g) is dropped. In this case  f rom (1.5) and (1.4) we have 

X, -x = (X-X), Xs = ~, + be (1.6) 

F r o m  (1.6), having c a r r i e d  out averaging,  we can obtain an explicit  fo rm of effective elast ic  moduli 
X s which will depend on the pa rame te r  ~ c and the shape of the grain. A solution coinciding with (1.6) was 
obtained in [2, 3, 7-14], but the f o r m  of the grain (polycrystall ine,  mechanical  mixture),  the shape of the 
grain, as well as the value of the pa r ame te r  ~ c in these investigations were  different. 

2. We shall now establish the connection between X, and its approximate value ~ n in the form of an 
inequality whose sign is determined by the value of X c" With this a im we cons ider  the doubled density of 
potential energy of elastic s t ra ins  t h e .  Its average  value over  a charac te r i s t i c  volume v, if we recal l  
Section 1, In view of the quas i -homogenei ty  of the field (e} sat isf ies  the following equations: 

(e~e) = (e)~v. (e) = + Ie~ .edV = + i  (e~.e)dV 
v v 

(2.1) 
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Taking into account (2.1), we wri te  the total potential  energy  of  s t ra in  U in the fo rm 

t 
U = ~ -  I eke dV ----- ~ I (eke) dV 

where integration is c a r r i e d  out over  the ent i re  space. 

In the f i r s t  boundary value problem a displacement  is specif ied on the surface of the region. Accord-  
ing to the minimum principle  of potential energy [14] the total  s t ra in  energy  Y in the unique solution ( a ,  s 
will be less  than in any other  v i r tua l  s t ra ins  ~ which cor respond  to the field of displacements ,  continuously 
and piecewise continuously differeat iable ,  assuming given values  on the surface.  

Thus, the inequality [14] 

U < --~- I ~K~'> dV 

o r  the inequality 

reducible to it is valid. 

Adding to (2.2) the equation 

<e~e> ~ <eke> (2.2) 

o = <(<e> - ~)6> 

which is val id for  quasi-homogeneous fields,  we obtain 

t i o n  

(2.3) 

Here  ~ is an a r b i t r a r y  piecewise continuous different iable field of s t r e s s e s  which sa t i s f ies  the equa-  

~J# = --  ]~ (2.4) 

The represen ta t ion  of ~ which is usual for  p rob lems  of this  kind has the fo rm [3, 12-14] 

a -- ~o~ + ~ (2.5) 

w h e r e  the polar ized  s t r e s s  7 in accordance  with (2.4) sa t isf ies  the equation 

L~,C~'k + '~, .~ = --/~ (2.6) 

SubstracUng f rom (2.6) the equation obtained by its averaging, we find the connection between ~ and 

---- (8> ~ G, 6~ (2.7) 

Here  G is the second der ivat ive  of the Green t ensor  of the ope ra to r  L c. The fo rm of the t ensor  7 
whose p rope r t i e s  a rc  descr ibed  in detail  in [14] influences ~, where in the ease  7 = ~ ' ~ the s t r e s s  
and the s t ra in  ~' coincide with the t rue  values  a and s 

We choose the approximating value ~ in the fo rm 

= ~.'en (2.8) 

where s is determined according to (1.2). Then from (2.5) we have 

= x~ + ~o (~ - e,,) (2.9) 

Substituting (2.9) in (2.3) and taking into account (2.5) and (2.8), we obtain 

<e> ~, <e> ~ <e> ~r <e> ~- <e> <~) ~- <~ (~ -- ca)> -b MI 
M, = <~(~ -- en)~,' (g -- ca)) (2.10) 

Let  the inequality 

M I ~ 0 (2.11) 

hold; the conditions of fu l f i lmentof th is  inequality are  discussed below. Then f rom (2.10) we find 

(e>~., (e) ~ (e> ~c(e) -~- (e)(~) ~ (~ (~ -- ca)) (2.12) 
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The r a n d o m  field ~ - e  n by m e a n s  of (2 .7 )and  (2.8) can  be b rough t  into the f o r m  

--  an = <e) + G, 6~ --  p~, pZ' = I (2.13) 

Subst i tut ion of (2.13) into (2.12) g ives  

<e) )~. <e> ..< <e> )~c <e> q- 2<e> <~> -- <~p~> + <6~G,6~> (2.14) 

It can be shown [3] that the right side (2.14) has an extremum under the condition 

= p,~ 

which in a c c o r d a n c e  with (2.8) g ives  

= e~ (2.15) 

When the inequal i ty  (2.11) is fulf i l led,  th i s  e x t r e m u m  will  be a m i n i m u m  [3]. 

By m e a n s  of (1.2), (1.3), (2.8), and (2.15) f r o m  (2.12) we obtain  the inequal i ty  

<~>),, <e> ~ <~><~.e~> = <e>),n<e> 

which e s t ab l i she s  the uppe r  bound fo r  X ,  

~, ~< ~,,l (2.16) 

If instead of (2.11) the inequality 

NI = <~,: (~ - -  an) s'Zc ($ --  e=)> ~ 0 (s'=s--s~) (2.17) 

is fulfi l led,  w h e r e  s Is the c o m p l i a n c e  t e n s o r ,  i nve r se  to the t e n s o r  X, then,  us ing  the t h e o r e m  of m i n i m u m  
c o m p l e m e n t a r y  e n e r g y  [14], we obta in  

L, > ~.~ (2.18) 

which gives the lower bound. 

We must bear in mind that in view of the conditions (2.11) and (2.17) the tensor X c, determining X n, 
turns out to be different for (2.16) and (2.18). Denoting by X c + the tensor X c satisfying respectively the 
inequalities (2.11) and (2.17), from (2.16) and (2.18) we find 

kn- ~< ),. ~< ~+ (2.19) 

where X n �9 are the values of the tensor X n obtained by means of the tensors X e �9 respectively. 

Carrying out an analogous analysis for the second boundary value problem, when loads are specified 
on the surface [14], we find bounds for X , in the form (2.19). Here Xel satisfy the inequalities 

M 2 = (s c (5 -- an) ),'so (~ -- an)> < 0 (2.20) 

N~. = <(~ - -  ~,,)s.' (3 - -  ,~,,) > < 0 

which r e s p e c t i v e l y  r e p l a c e  the inequa l i t i es  (2.11) and (2.17). 

It should be noted tha t  the bounds (2.19), in c o n t r a s t  to  the bounds obtained in [3], to  which the ze ro th  
a p p r o x i m a t i o n  c o r r e s p o n d s ,  c a n  be made  a r b i t r a r i l y  na r row ,  and fo r  n - -  ~ they  co inc ide  with the  exac t  
va lue  o f  the e f fec t ive  modul i  X . .  To ca l cu la t e  ~ n, however ,  we need in fo rma t ion  about  the c e n t r a l  m o m e n t  
funct ions  of h ighe r  o r d e r s  [1]. 

3. Concluding,  we show tha t  the  bounds  (2.19) c an  be i m p r o v e d  in c o m p a r i s o n  with the bounds  of  
Hash in  and Sh t r i kman  [3] a l so  as  a r e s u l t  of  a b e t t e r  cho ice  of the p a r a m e t e r  ), c. In [3, 12-14] it is a s s u m e d  
tha t  the  inequa l i t i es  (2.11), (2.17), and (2.20) take  p lace  unde r  the condi t ion  

x' ~ 0 (3.1) 

f o r  the f o r m s  M~ and M 2 and 

s' ~.< 0 (3.2) 

fo r  the f o r m s  N 1 and N 2. It iS obvious  that  the l a t t e r  is equivalent  to the inequal i ty  

;~' > 0 (3.3) 
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The inequali t ies  (3.1)-(3.3) should be understood,  as  usual,  in the sense  of negative (positive) s e m i -  
def ini teness  of quadrat ic  f o r m s  set  up by means  of the t e n s o r s  X ' and s ' .  

However ,  (3.1) and (3.2) a r e  not the only poss ib le  solut ions of the inequali t ies  (2.11), (2.17), and (2.20). 
We shall  cons ider ,  in pa r t i cu la r ,  the s ingular  approximat ion  for  a case  where  body f o r c e s  a r e  absent ,  
while the mac roscop ic  f ie lds  a re  homogeneous.  

Then the quadrat ic  f o r m s  M and N reduce  to moment  functions of the th i rd  o rde r ,  we can  let  the 
volume v tend to infinity, and the e las t ic  fields of s t r e s s e s  and s t ra ins  a r e  homogeneous within the 
gra in  [12, 13]. 

It is  e a sy  to see that  in the ca se  of a mechanica l  mix ture  of two isot ropic  components  the inequali-  
t i e s  M 1 <- 0 and M 2 <- 0 a re  sa t is f ied under the condition 

clX ~ + c2X t - -  X c ~ 0 (3.4) 

while the inequali t ies N i <- 0 and N2-  < 0 a r e  sat isf ied under  the condition 

cls2 + c2sl - -  s, ..< 0 (3.5) 

where  c a ,  ~,~, and s~ a r e  the volume concent ra t ion  a n d t h e  t e n s o r s  of the e las t ic  moduli and e las t ic  c o m -  
pl iances  of the ~ - t h  component.  As both components  a re  isot ropic ,  for  a mac roscop ica l ly  lsot ropic  medium 
the c o m p a r i s o n  field X c mus t  a lso  be chosen  isotropte .  But then inequalit ies (3.4) and (3.5) de te rmine  the 
t e n s o r s  

~r = X~ <k-l> kt, ),,- = Lz <~>-~ (3.6) 

which fo r  k i <_ k 2 sa t i s fy  the inequali t ies  

h ~ gd ~ X~ + ~ Xt (3.7) 

Since accord ing  to (3.1)-(3.3) in the role  of k + and X c- we must  choose k 2 and X! [1], while k s in- 
c r e a s e s  with k e [12], the chosen kc~ leads  to n a r r o w e r  bounds. Denoting by k H ~ t h e  bounds found by means  
of Xc :e which sa t i s fy  (3.1)-(3.3) [3, 12-14], while by k s  ~ denoting the analogous va lues  obtained by means  of 
(3.6), and taking into account  (3.7), we wr i t e  

x,- ~< ~,- ..< x, ~ x:  ..< XH- 

Thus,  use of all  the information contained by the quadrat ic  f o r m s  M and N enables  us, even within the 
f r a m e w o r k  of the s ingular  approximat ion,  to nar row the bounds of Hashin and Shtr ikman as  a resu l t  of a 
be t t e r  choice of the p a r a m e t e r  k c" A fu r the r  nar rowing  of the bounds is poss ib le  only if we take into 
account  inhomogenei t ies  of the f ie ld in the grain.  This  f ield for  n ~ 0 in (1.2) and (1.3) is desc r ibed  by 
t e r m s  obtained by means of the nonlocal ope ra to r  h. 

Concluding, we note that  the ave r age  va lues  of effect ive moduli obtained in [7-10] a r e  equivalent to 
the values  of k s ca lcula ted  by means  of (1.6), if in the ro le  of k c we choose  the value X V --- ( k )  for  the so-  
cal led Voigt model [7-10] and k R - (X -1)-1 for  the Reuss  model [7, 10]. Although in both c a s e s  the values  
e l k  s thus found lie within the bounds of Hashin and Shtr lkman [7], they t h e m s e l v e s  do not f o r m  bounds. 
Indeed, the values  of X V and X R sa t i s fy  the inequali ty (3.4) under  the condition 

(*t - r ( h  - L,) > 0 (3 .8 )  

(cxXz + c~Lz)z ~ XzX2 (3.9) 

which for  ce r t a in  concent ra t ions  a r e  s imul taneous ly  fulfilled. In this  case  both the Voigt and Reuss  models  
give the upper  bounds. On the o the rhand ,  Xv-1 and XR-i sa t i s fy  the inequality (3.5) under  the conditions 

(c~L~ + oj0~.< ~x~ (3.10) 

(cx - -  c2 ) (Xx - -  ~'2) ~ 0 ( 3 . 1 1 )  

When (3.10) and (3.11) a r e  s imul taneously  fulfilled, both models  give the lower  bounds. However ,  for  
the values  of effect ive moduli obtained in the Voigt model CA c =X V) to f o r m  bounds for  X , ,  s imul taneous  
fulf i lment of the inequali t ies (3.8) and (3.11) is neces sa ry .  

Since this  is imposs ib le ,  solutions in the Voigt and Reuss  models  do not lead to set t ing up of the 
bounds, but can be used to improve  one of them. 
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